Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38535803

RESUMO

The presence of mycotoxins and their masked forms in chicken feed poses a significant threat to both productivity and health. This review examines the multifaceted impacts of mycotoxins on various aspects of chicken well-being, encompassing feed efficiency, growth, immunity, antioxidants, blood biochemistry, and internal organs. Mycotoxins, toxic substances produced by fungi, can exert detrimental effects even at low levels of contamination. The hidden or masked forms of mycotoxins further complicate the situation, as they are not easily detected by conventional methods but can be converted into their toxic forms during digestion. Consequently, chickens are exposed to mycotoxin-related risks despite apparently low mycotoxin levels. The consequences of mycotoxin exposure in chickens include reduced feed efficiency, compromised growth rates, impaired immune function, altered antioxidant levels, disturbances in blood biochemical parameters, and adverse effects on internal organs. To mitigate these impacts, effective management strategies are essential, such as routine monitoring of feed ingredients and finished feeds, adherence to proper storage practices, and the implementation of feed detoxification methods and mycotoxin binders. Raising awareness of these hidden hazards is crucial for safeguarding chicken productivity and health.


Assuntos
Micotoxinas , Aves Domésticas , Animais , Galinhas , Antioxidantes , Contaminação de Medicamentos
2.
Anim Biosci ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38419537

RESUMO

Objective: This study aimed to investigated the effects of dietary supplementation with lysolecithins (LPC) on growth performance, nutrient digestibility, blood profiles, immunity, and liver health in broiler chickens. Methods: A cohort of 240 one-day-old male Arbor Acres broilers of comparable weight was divided into four treatment groups, each comprising six replicates of 10 birds. The groups were defined as follows: positive control with recommended metabolizable energy (PC+ME), negative control with 90 kcal/kg reduced ME (NC+ME), PC supplemented with 300 mg/kg LPC (PC+LPC), and NC supplemented with 300 mg/kg LPC (NC+LPC). Results: LPC supplementation led to a statistically significant reduction in the feed conversion ratio (P = 0.05) and a decrease in the proportion of abdominal fat and the liver (P<0.05). Digestibility of dry matter was also enhanced (P < 0.05). Malondialdehyde concentrations in the liver were significantly reduced by LPC (P<0.01), with a noteworthy interaction between energy levels and LPC affecting this reduction (P<0.05). Serum levels of interleukin-6 were reduced on day 21, and both endotoxin and interleukin-6 levels were lower on day 42. Notably, a significant interaction was observed between the energy levels and LPC on relative liver weight and endotoxin concentrations in the serum (P<0.05). Conclusion: The study concluded that LPC positively affects growth performance, nutrient digestibility, immune response, and antioxidative capacity in broiler chickens, affirming its value as a beneficial feed additive in poultry nutrition.

3.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37933958

RESUMO

This study aimed to investigate the effects of diets supplemented with 25-hydroxycholecalciferol [25-(OH)D3] and additional vitamin E on growth performance, antioxidant capacity, bone development, and carcass characteristics at different stocking densities on commercial broiler farms. A total of 118,800 one-day-old Arbor Acres broilers were assigned to a 2 × 2 factorial treatment consisting of two dietary vitamin levels (5,500 IU vitamin D3 and 60 IU vitamin E: normal diet, using half 25-(OH)D3 as a source of vitamin D3 and an additional 60 IU of vitamin E: 25-(OH)D3+VE diet) and two stocking densities (high density of 20 chickens/m2: HD and 16 chickens/m2: LD). The experiment lasted for 42 d. The results showed that high-density stocking negatively affected the growth performance of broilers during the first four weeks, whereas the vitamin diet treatment significantly improved the feed conversion ratios (FCR) during the last 2 wk. Vitamin diets increased catalase at 14 and 42 d, and the glutathione peroxidase (GSH-px) levels at 42 d in high-density-stocked broilers. The interaction showed that serum vitamin E levels were significantly improved at 28 d of age in high-density-stocked broilers as a result of the vitamin diets. Stocking density and dietary treatments were found to significantly affect bone development, with the vitamin diet significantly increasing metatarsal length and femoral bone strength in broilers from high-density stocking density at 28 d of age. High stocking density increased the proportion of leg muscles and meat yield per square meter. In general, 25-(OH)D3 and additional vitamin E suppressed oxidative stress and ameliorated the negative effects of high-density stocking on bone development in a commercial chicken farm setting. Vitamin diets improved the FCR of broilers, while high-density stocking resulted in better economic outcomes.


High-density stocking is often associated with animal welfare risks in broilers, mainly in terms of oxidative stress and bone development. Nevertheless, farming at too low a density remains for the most part economically unviable. Modulation of antioxidant capacity and bone development by nutritional strategies in high-density-farmed broilers has proven an effective tool in developing countries. Therefore, the present study investigated the effects of applying diets with a higher biological potency of vitamin D3 25-hydroxycholecalciferol [25-(OH)D3] and a higher concentration of vitamin E on broiler production performance, antioxidant capacity and meat production performance at different densities of stocking under commercial farming conditions. The results indicated that the vitamin dietary treatments suppressed oxidative stress and ameliorated the negative effects of high-density farming on bone development.


Assuntos
Calcifediol , Galinhas , Animais , Calcifediol/farmacologia , Galinhas/fisiologia , Antioxidantes , Vitamina E/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Vitaminas/farmacologia , Colecalciferol , Desenvolvimento Ósseo , Ração Animal/análise
4.
J Anim Sci Biotechnol ; 14(1): 113, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37674220

RESUMO

BACKGROUND: The poultry industry needs effective antibiotic alternatives to control outbreaks of necrotic enteritis (NE) caused by Clostridium perfringens. METHODS: The aim of this study was to investigate the effects of dietary supplementation with Macleaya cordata extract (MCE) on the immune function and gut microbiota of broilers with NE. A total of 288 1-day-old broiler chicks were randomly assigned to a 2 × 2 factorial arrangement with two concentrations of dietary MCE supplementation (0 or 350 mg/kg of diet) and two disease challenge statuses (control or NE). RESULTS: The results revealed that NE significantly increased the feed conversion rate (FCR), mortality, intestinal lesion score, the levels of IL-1ß, IL-17 and IFN-γ/IL-4 in serum and IL-17/IL-10 in the jejunal mucosa, mRNA levels of TLR2, IFN-γ and pIgR in the jejunum, and Clostridium perfringens concentrations in the cecum. NE significantly decreased the body weight (BW), body weight gain (BWG), jejunal villus height, V/C, mRNA level of AMPK-α1 in jejunum, IL-4 level in the jejunal mucosa and lactic acid bacteria abundance in the cecum. MCE significantly increased BW, BWG, jejunal villus height, V/C, mRNA levels of occludin, ZO-1 and AMPK-α1 in the jejunum, the levels of IgA and IgG in serum and IL-10 in the jejunal mucosa and mRNA levels of NF-κB, IL-10 and MHC-II in the jejunum. Additionally, MCE significantly decreased the FCR, mortality, intestinal lesion score, jejunal crypt depth, the levels of IFN-γ and IL-17 in serum and IL-17/IL-10 in the jejunal mucosa, Clostridium perfringens concentrations in the cecum, and mRNA levels of IL-17/IL-10 in the jejunum. Moreover, NE significantly increased the abundance of bacteria that are associated with inflammation, obesity and depression (Alistipes, Barnesiella, Intestinimonas, RF39 and UCG-005) and significantly decreased the abundance of short-chain fatty acid (SCFA)-producing bacteria (Anaerotruncus, Butyricicoccus and Bacteroides) in the cecum. MCE significantly increased the abundance of SCFA-producing bacteria (Streptococcus, Ruminococcus_torques_group and Lachnospiraceae_NK4A136_group) and significantly reduced the abundance of bacteria that are associated with inflammation and obesity (Alistipes, Barnesiella and UCG-010) in the cecum. In the cecum of broilers with NE, the relative abundance of Barnesiella and Alistipes was higher and that of Lachnoclostridium and Shuttleworthia was lower. Interestingly, these trends were reversed by the addition of MCE to the diet. Spearman correlation analysis showed that Barnesiella and Alistipes were associated with enhanced intestinal inflammation and inhibited growth performance, whereas Lachnoclostridium and Shuttleworthia were associated with anti-inflammatory effects. CONCLUSIONS: MCE ameliorated the loss of growth performance in broiler chickens with NE, probably by regulating the intestinal barrier, immune function, and gut microbiota.

5.
Sci Data ; 10(1): 594, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679362

RESUMO

Chickens are remarkably versatile animals that are used as model organisms for biomedical research. Here, we performed metabolomic and RNA sequencing (RNA-Seq) transcriptomic analyses of the hypothalamus, liver tissue and serum of poultry with different genetic backgrounds, providing detailed information for hypothalamus and liver tissue at the transcriptional level and for liver tissue and serum at the metabolite level. We present two datasets generated from 36 samples from three poultry breeds using high-throughput RNA-Seq and liquid chromatography coupled with mass spectrometry acquisition (LC/MS). The transcriptomic and metabolomic data obtained for poultry of different genetic backgrounds will be a valuable resource for further studies on this model organism.


Assuntos
Aves Domésticas , Transcriptoma , Animais , Galinhas/genética , Perfilação da Expressão Gênica , Metabolômica , Aves Domésticas/genética
6.
J Anim Sci Biotechnol ; 14(1): 72, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143114

RESUMO

BACKGROUND: In broiler chickens, necrotic enteritis (NE) infection can reduce production performance. Tannic acid has shown great potential as a treatment of NE in broilers. However, the appropriate dosage of tannic acid in NE of broilers and the improvement effect on intestinal health are not very clear. In this study, we aimed to investigate the effects of different doses of tannic acid on the production performance, immunity, and intestinal health of broilers by constructing an NE model with C. perfringens infection and determining the appropriate dosage of tannic acid with regard to NE. RESULTS: Challenged birds showed significant reduction in body weight, villus height, and the ratio of villus height to crypt depth (P < 0.05) and increase in the feed consumption gain ratio, intestinal lesion score, and crypt depth (P < 0.05). The infection significantly reduced the relative Bacteroidota and Ligilactobacillus abundance (P < 0.05) and increased the ratio of Firmicutes/Bacteroidota and cecal content of C. perfringens (P < 0.05). Challenged birds fed diets supplemented with tannic acid showed significantly increased mRNA expression of nutrient transport carriers and intestinal barrier genes and growth performance and reduced serum zonulin and endotoxin levels (P < 0.05). Addition of tannic acid to the diet inhibited the inflammatory response by reducing the number of coccidia oocysts in feces and the content of C. perfringens in the cecum. Specifically, tannic acid reduced the serum levels of C reactive protein, myeloperoxidase, and specific IgY and ileal mucosal secretory immunoglobulin A levels in the ileal mucosa compared with those in the NE-infected birds. NE-infected birds fed diets supplemented with tannic acid also showed significantly increased relative Anaerocolumna, Thermoanaerobacterium, and Thermosinus abundance (P < 0.05); their microbial composition and functional predictions were similar to those of the NC group. CONCLUSIONS: Tannic acid in the diet alleviated NE by enhancing the intestinal barrier and absorption function. The recommended dietary tannic acid additive level is 500-750 mg/kg. Our study findings would be useful in reducing related economic losses in the broiler industry.

7.
J Anim Sci Biotechnol ; 13(1): 144, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36522791

RESUMO

BACKGROUND: In China, cage systems with a high space utilization have gradually replaced ground litter systems, but the disease incidence of chickens in cages is higher. Broilers in the ground litter pens may be stimulated by more environmental microbes during the growth process and show strong immune function and status, but knowledge of which microbes and their metabolites play an immunomodulatory role is still limited. This study aimed to explore the differences and correlations in the immune function, gut microbiota and metabolites and the importance of gut microbiota of broilers raised in cages and ground litter pens. METHODS: The experiment involved a 2 × 2 factorial arrangement, with rearing systems (cages or ground litter pens) and antibiotic treatment (with or without broad-spectrum antibiotics in drinking water) as factors. RESULTS: The results showed that, compared with the cage group, the ground litter broilers had stronger nonspecific immune function (Macrophages% and NO in blood), humoral immune function (IgG in blood, LPS stimulation index in ileum) and cellular immune function (T%, Tc%, ConA stimulation index and cytokines in blood). Antibiotic (ABX) treatment significantly reduced nonspecific immune function (Macrophages% and NO in blood, iNOS and Mucin2 mRNA expression in ileum), humoral immune function (IgG in blood and sIgA in ileum) and cellular immune function (T% and cytokines in blood, Th and Tc ratio, TLRs and cytokines mRNA expression in ileum). Furthermore, the ground litter broilers had higher α diversity of microbiota in ileum. The relative abundance of Staphylococcus, Jeotgalicoccus, Jeotgalibaca and Pediococcus in the ileum of ground litter broilers were higher. ABX treatment significantly reduced the α diversity of ileal microbiota, with less Chloroplast and Mitochondria. In addition, the levels of acetic acid, isobutyric acid, kynurenic acid and allolithocholic acid in the ileum of ground litter broilers were higher. Spearman correlation analysis showed that Jeotgalibaca, Pediococcus, acetic acid, kynurenic acid and allolithocholic acid were related to the immune function. CONCLUSIONS: There were more potential pathogens, litter breeding bacteria, short-chain fatty acids, kynurenine, allolithocholic acid and tryptophan metabolites in the ileum of broilers in ground litter pens, which may be the reason for its stronger immune function and status.

8.
Front Immunol ; 13: 884615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812374

RESUMO

The topic about the interactions between host and intestinal microbiota has already caught the attention of many scholars. However, there is still a lack of systematic reports on the relationship between the intestinal flora and intestinal physiology of birds. Thus, this study was designed to investigate it. Antibiotic-treated specific pathogen-free (SPF) bird were used to construct an intestinal bacteria-free bird (IBF) model, and then, the differences in intestinal absorption, barrier, immune, antioxidant and metabolic functions between IBF and bacteria-bearing birds were studied. To gain further insight, the whole intestinal flora of bacteria-bearing birds was transplanted into the intestines of IBF birds to study the remodeling effect of fecal microbiota transplantation (FMT) on the intestinal physiology of IBF birds. The results showed that compared with bacteria-bearing birds, IBF birds had a lighter body weight and weaker intestinal absorption, antioxidant, barrier, immune and metabolic functions. Interestingly, FMT contributed to reshaping the abovementioned physiological functions of the intestines of IBF birds. In conclusion, the intestinal flora plays an important role in regulating the physiological functions of the intestine.


Assuntos
Antibacterianos , Transplante de Microbiota Fecal , Animais , Antibacterianos/farmacologia , Antioxidantes , Bactérias , Aves , Intestinos
9.
Microbiol Spectr ; 10(4): e0004522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35766494

RESUMO

This study aimed to compare the immune function and gut microbiota between double-layer caged and litter floor pen-raised broiler chickens. Eighty meaty male chicks were selected and divided into cage group and litter floor group, with 20 replicates in each group. The broilers were raised in the same chicken house. The rearing density of the two rearing systems was same. The broilers were sampled on days 13 and 34. The results showed that compared with the cage group, the litter floor broilers had worse growth performance (23.24% increase in feed conversion ratio) in the early stage; better slaughter performance at day 42; stronger peripheral immune function (including higher lysozyme activity, T-cell ratio, Th-cell ratio, Tc-cell ratio, CD4/CD8, IL-10, B-cell ratio, IgG and IgA levels; and spleen immune-related gene expression); and stronger intestinal immune function (including higher ileum CD80, AvBD2, Mucin2, NF-κB, IL-8, IFN-γ/IL-4, and IgA mRNA expression levels and ileal mucosa sIgA levels). Compared with the cage group, the alpha diversity of ileum microbiota of the litter floor broilers was higher, and the relative abundance levels of litter breeding bacteria (Facklamia, Globicatella, and Jeotgalicoccus) and potential pathogenic bacteria (Streptococcus and Staphylococcus) were higher (P < 0.05). Through Spearman correlation analysis, it was found that enriched microbes in the ileum of litter floor broilers were positively correlated with immune function. In summary, compared with cage broilers, litter floor broilers had more potential pathogenic bacteria and litter breeding bacteria in the ileum, which may be one of the important reasons for the stronger immune function status. IMPORTANCE In China, the three-dimensional rearing system (cage) for broilers has gradually become a trend. In production, it was found that the incidence of disease in broiler chickens raised in cage systems was significantly higher than that of ground litter. Given that broilers raised on ground litter systems may be exposed to more environmental microbes, it is important to understand whether the rearing environment affects the function and status of the host immune system by altering the gut microbiota. In this study, rearing environment-derived gut microbes associated with stronger immune function in ground litter broilers were provided, which will provide new insights into strategies to target gut microbes to promote immune function and status in broilers raised in cages.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Bactérias , Imunidade , Imunoglobulina A , Masculino , Carne
10.
Poult Sci ; 101(8): 101921, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691239

RESUMO

Soya saponin (SS) helps to improve antioxidant and immune function of body, and intestinal bacteria might play an important role here. In the present study, the co-occurring network of the ileal flora was analyzed with 50 mg/kg SS supplemented to the diet, and Romboutsia was found to have evolved into a dominant flora. In addition, the co-occurring network of the flora was changed with the combined antibiotic treated, and the unidentified-cyanobacteria developed into the dominant flora, whereas the relative abundance of Romboutsia was dropped. Dietary SS failed to elevate the relative abundance of Romboutsia with antibiotics treated, at the same time, it was not helpful for the antioxidant and immune function of laying hens. While dietary SS had a little help on the egg-laying performance. Intestinal bacteria did play a key role in the biological functions of SS on laying hens. In conclusion, SS failed to improve the antioxidation and immune function of laying hens with antibiotics treated.


Assuntos
Antioxidantes , Saponinas , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antibacterianos/farmacologia , Galinhas , Dieta/veterinária , Suplementos Nutricionais , Feminino , Imunidade , Saponinas/farmacologia
11.
Front Immunol ; 13: 781934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265068

RESUMO

This study aimed to investigate the effects of dietary astragalus polysaccharide (APS) supplementation on the immune function, gut microbiota and metabolism of broiler chickens challenged with necrotic enteritis (NE). Two hundred forty Arbor Acres broiler chicks (one day old) were randomly assigned using a 2 × 2 factorial arrangement into two groups fed different levels of dietary APS (0 or 200 ppm of diet) and two disease challenge groups (control or NE challenged). The results showed that NE infection significantly increased FCR, mortality rate, Th17/Treg (Th17 cells% in blood and ileum, Th17/Treg, IL-17 and IL-17/IL-10 in blood), NO, lysozyme activity and IL-1ß in blood, intestinal immune cell proportion and activity (Tc%, Treg% and monocyte phagocytic activity in ileum), intestinal inflammatory cytokines (TLR2, NF-κB, TNF-α and IL- 6) gene expression levels, and the number of Clostridium perfringens in cecum. NE infection significantly reduced body weight gain, thymus index, lymphocyte proliferation activity in blood and ileum, villus height and V/C in jejunum, Th cells% and Mucin2 gene expression in ileum. Dietary APS supplementation significantly increased body weight, feed intake, proportion of immune cells (T cells in blood and Tc, Treg in ileum), lymphocyte proliferation activity, V/C in jejunum, and ZO-1 gene expression in ileum. Dietary APS supplementation significantly reduced FCR and mortality rate, Th17/Treg, Th17%, intestinal pathology scores, intestinal inflammatory cytokine gene expression levels, and the number of Clostridium perfringens in cecum. In addition, broilers challenged with NE significantly increased Staphylococcus and Turicibacter and reduced α diversity of microbiota in ileum. Dietary APS supplementation significantly increased α diversity, Romboutsia, Halomonas, propionic acid, butyric acid, formononetin, taurine, cholic acid and equol and downregulated uric acid, L-arginine and serotonin in ileum. Spearman's correlation analysis revealed that Romboutsia, Turicibacter, Staphylocpccus, Halomonas, Streptococcus, Escherichia-Shigella, Prevotella, uric acid, L-arginine, jerivne, sodium cholate and cholic acid were related to inflammation and Th17/Treg balance. In conclusion, APS alleviated intestinal inflammation in broilers challenged with NE probably by regulating intestinal immune, Th17/Treg balance, as well as intestinal microbiota and metabolites.


Assuntos
Enterite , Enterocolite Necrosante , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Ração Animal/análise , Animais , Arginina , Peso Corporal , Galinhas , Ácido Cólico , Clostridium perfringens , Suplementos Nutricionais/análise , Enterite/veterinária , Inflamação/veterinária , Interleucina-17 , Polissacarídeos/farmacologia , Linfócitos T Reguladores , Células Th17 , Ácido Úrico
12.
J Anim Sci Biotechnol ; 12(1): 42, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33731181

RESUMO

BACKGROUND: There are many diseases in poultry, many of which are caused by poor immune function. It is not clear how cytokines and various immune cell functions change with age in modern broilers. The purpose of this study was to explore the patterns of development of the immunity of the broiler chickens in cage. RESULTS: The results showed that there were 3 development patterns of immunity in the broiler chickens. The first pattern was Down-Up. Cytokines and some immune indicators first decreased and then increased, and the lowest levels of immunity basically occurred from d 6 to 13. The second pattern was Up-Down, and from d 30 to 34, the highest levels of non-specific cellular immunity components, such as the peripheral blood mononuclear macrophage ratio, specific cellular immunity components, such as the peripheral blood helper T (Th) cell ratio and T cell and B cell proliferation activity, and mucosal immunity components, such as the ileal CD4, TGF-ß1 and IgA mRNA levels, were observed. The third pattern was Up-Up, and the levels of the non-specific cellular immunity components, such as the serum nitric oxide (NO), C3 and C4 levels, the specific cellular immunity components, such as the spleen index, peripheral blood IL-2, IFN-γ/IL-4, cytotoxic T (Tc) cell ratio, and splenic NF-κB mRNA levels, the humoral immunity components, such as the serum IgG level, the mucosal immunity components, such as the ileal MHC-II, CD3d, TCRß subunit, TCRζ subunit, IFN-γ, pIgR mRNA and ileal mucosa sIgA levels, were continuing to increase from d 1 to 34. CONCLUSIONS: It could be concluded that the immune system and its function have not developed well in the broiler chickens d 6 to 13 and that the immune system does not mature until d 30 to 34 in the broiler chickens in cages. It is necessary to enhance the immune function of the broiler chickens through nutritional measures from d 1 to 30.

13.
Oxid Med Cell Longev ; 2019: 9214209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31049141

RESUMO

The experiment was designed to clarify the effect and molecular mechanism of maternal genistein (GEN) on the lipid metabolism and developmental growth of offspring chicks. Laying broiler breeder (LBB) hens were supplemented with 40 mg/kg genistein (GEN), while the control group was fed with the low-soybean meal diet. The offspring chicks were grouped according to the mother generation with 8 replicates each. Hepatic transcriptome data revealed 3915 differentially expressed genes (DEGs, P adjusted < 0.05, fold change > 1.5 or fold change < 0.67) between chicks in the two groups. Maternal GEN activated the GH-IGF1-PI3K/Akt signaling pathway, which promoted the developmental processes and cellular amino acid metabolic processes, as well as inhibited the apoptotic process. GEN treatment significantly increased the weight gain, breast muscle percentage, and liver index in chicks. PANTHER clustering analysis suggested that maternal GEN enhanced the antioxidant activity of chicks by the upregulation of gene (SOD3, MT1, and MT4) expression. Accordingly, the activities of T-AOC and T-SOD in the liver were increased after GEN treatment. The overrepresentation tests revealed that maternal GEN influenced the glycolysis, unsaturated fatty acid biosynthesis, acyl-coenzyme A metabolism, lipid transport, and cholesterol metabolism in the chick livers. Hepatic cholesterol and long-chain fatty acid were significantly decreased after GEN treatment. However, the level of arachidonic acid was higher in the livers of the GEN-treated group compared with the CON group. Moreover, GEN treatment enhanced fatty acid ß-oxidation and upregulated PPARδ expression in the chick liver. ChIP-qPCR analysis indicated that maternal GEN might induce histone H3-K36 trimethylation in the promoter region of PPARδ gene (PPARD) through Iws1, methyltransferases. It also induced histone H4-K12 acetylation at the PPARD promoter through MYST2, which activated the PPAR signaling pathways in the chick livers. In summary, supplementing LBB hens with GEN can alter lipid metabolism in the offspring chicks through epigenetic modification and improve the antioxidative capability as well as growth performance.


Assuntos
Suplementos Nutricionais , Epigênese Genética/efeitos dos fármacos , Ácidos Graxos/biossíntese , Genisteína/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Galinhas , Feminino , Masculino
14.
Front Immunol ; 10: 838, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057556

RESUMO

Long non-coding RNAs (lncRNAs) have recently emerged as new regulatory molecules with diverse functions in regulating gene expression and significant roles in the immune response. However, the function of many unknown lncRNAs is still unclear. By studying the regulatory effect of daidzein (DA) on immunity, we identified a novel lncRNA with an immune regulatory function: lncRNA- XLOC_098131. In vivo, DA treatment upregulated the expression of lncRNA- XLOC_098131, FOS, and JUN in chickens and affected the expression of activator protein 1 (AP-1) to regulate MAPK signaling, Toll-like receptor signaling, and related mRNA expression. It also enhanced macrophage activity and increased the numbers of blood neutrophils and mononuclear cells, which can improve the body's ability to respond to stress and bacterial and viral infections. Furthermore, DA treatment also reduced B lymphocyte apoptosis and promoted the differentiation of B lymphocytes into plasma cells, which in turn resulted in the production of more immunoglobulins and the promotion of antigen presentation. In vitro, using HEK293FT cells, we demonstrated that mir-548s could bind to and decrease the expression of both FOS and lncRNA- XLOC_098131. LncRNA- XLOC_098131 served as a competitive endogenous RNA to stabilize FOS by competitively binding to miR-548s and thereby reducing its inhibitory effect of FOS expression. Therefore, we concluded that the novel lncRNA XLOC_098131 acts as a key regulatory molecule that can regulate the Toll-like receptor signaling pathway and related immune function by serving as a competitive endogenous RNA to stabilize FOS mRNA expression.


Assuntos
Proteínas Aviárias/imunologia , Galinhas/imunologia , Proteínas Proto-Oncogênicas c-fos/imunologia , Estabilidade de RNA/imunologia , RNA Longo não Codificante/imunologia , RNA Mensageiro/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Animais , Células HEK293 , Humanos
15.
Artigo em Inglês | MEDLINE | ID: mdl-29416856

RESUMO

BACKGROUND: The poultry industry is in need of effective antibiotic alternatives to control outbreaks of necrotic enteritis (NE) due to Clostridium perfringens. METHODS: This study was conducted to investigate the effects of feeding Bacillus coagulans on the growth performance and gut health of broiler chickens with C. perfringens-induced NE. Two hundred and forty 1-day-old broiler chicks were randomly assigned to a 2 × 2 factorial arrangement with two dietary B. coagulans levels (0 or 4 × 109 CFU/kg of diet) and two disease challenge statuses (control or NE challenged). RESULTS: NE-induced reduction in body weight gain was relieved by the addition of B. coagulans into broiler diets compared with the NE-infected birds. NE infection damaged intestinal morphological structure, promoted intestinal C. perfringens growth and liver invasion, and enhanced anti-C. perfringens specific sIgA concentrations in the gut and specific IgG levels in serum compared with the uninfected birds. NE infection significantly (P < 0.05) decreased mucin-2 (at 14 d post-infection (DPI), toll -like receptor 2 (TLR2, at 7 and 14 DPI), TLR4 (at 7 and 14 DPI), tumor necrosis factor super family 15 (TNFSF15, at 7 and 14 DPI), lysozyme (LYZ, at 14 DPI) and fowlicidin-2 (at 7 and 14 DPI) mRNA levels, whereas it dramatically (P = 0.001) increased IFN-γ mRNA levels at 7 DPI. However, challenged birds fed diets supplemented with B. coagulans showed a significant (P < 0.01) decrease in gut lesion scores, decreased C. perfringens numbers in the cecum and liver, and an increase in fowlicidin-2 mRNA levels in compared with the uninfected birds. In addition, compared with the non-supplemented group, dietary inclusion of B. coagulans improved intestinal barrier structure, further increased specific sIgA levels and alkaline phosphatase (IAP) activity in the jejunum, enhanced the expression of jejunum lysozyme mRNA, and inhibited the growth, colonization, and invasion of C. perfringens; in contrast, it reduced serum-specific IgG concentrations and jejunum IFN-γ mRNA levels. CONCLUSION: These results indicated that dietary B. coagulans supplementation appeared to be effective in preventing the occurrence and reducing the severity of C. perfringens-induced NE in broiler chickens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...